Conformally parallel Spin(7) structures on solvmanifolds

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conformally Parallel G2 Structures on a Class of Solvmanifolds

Starting from a 6-dimensional nilpotent Lie group N endowed with an invariant SU(3) structure, we construct a homogeneous conformally parallel G2-metric on an associated solvmanifold. We classify all half-flat SU(3) structures that endow the rank-one solvable extension of N with a conformally parallel G2 structure. By suitably deforming the SU(3) structures obtained, we are able to describe the...

متن کامل

Polynomial Poisson structures on affine solvmanifolds

A n-dimensional Lie group G equipped with a left invariant symplectic form ω+ is called a symplectic Lie group. It is well-known that ω+ induces a left invariant affine structure on G. Relatively to this affine structure we show that the left invariant Poisson tensor π+ corresponding to ω+ is polynomial of degree 1 and any right invariant k-multivector field on G is polynomial of degree at most...

متن کامل

Complex and Kähler Structures on Compact Solvmanifolds

We discuss our recent results on the existence and classification problem of complex and Kähler structures on compact solvmanifolds. In particular, we determine in this paper all the complex surfaces which are diffeomorphic to compact solvmanifolds (and compact homogeneous manifolds in general).

متن کامل

A note on compact solvmanifolds with Kähler structures

We know that the existence of Kähler structure on a compact complex manifold imposes certain homological or even homotopical restrictions on its underlining topological manifold. Hodge theory is of central importance in this line. There have been recently certain extensions and progresses in this area of research. Among them is the field of Kähler groups, in which the main subject to study is t...

متن کامل

Conformally Flat Structures and Hyperbolic Structures

We define an abelian group, the conformal cobordism group of hyperbolic structures, which classifies the hyperbolic structures according to whether it bounds a (higher dimensional) conformally flat structure in a conformally invariant way. We then construct a homomorphism from this group to the circle group, using the eta invariant. The homomorphism can be highly nontrivial. It remains an inter...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: TURKISH JOURNAL OF MATHEMATICS

سال: 2014

ISSN: 1300-0098,1303-6149

DOI: 10.3906/mat-1105-36